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FROBENIUS GALOIS GROUPS 
OVER QUADRATIC FIELDS 

BY  

J A C K  SONN 

ABSTRACT 

There exists a quadratic field Q ( V D )  over which every Frobenius group is 

realizable as a Galois  group. 

I. Introduction 

A Frobenius group is a finite transitive permutation group in which every 

element different from 1 has at most one fixed point, and some element different 

from 1 has a fixed point. Our  main result is that there exist infinitely many 

quadratic fields Q(~v/D) such that every Frobenius group is realizable as the 

Galois group of an extension of Q(~/D),  where Q denotes the field of rational 

numbers. From the proof it appears likely that the result holds for Q as well as 

for quadratic fields. Indeed, we will show that given any number field k, every 

Frobenius group is a Galois group over k provided that SL(2, 5) and one other 

nonsolvable group of order  240 are Galois groups over k. Here  and in the rest of 

this paper, we will say G is a Galois group over k if there exists a Galois 

extension K / k with Galois group G (K / k) isomorphic to G. 

Let k be a field, /~ its separable closure. An embedding problem over k is 

given by a finite Galois extension K/k ,  together with an epimorphism 

f: E ~ G ( K / k )  with E a finite group. A solution to this embedding problem is 

given by a homomorphism g : G(/~ / k )---~ E such that fg is the natural restriction 

map res( /~/K):  G((c/k)---~ G(K/k) .  If g is surjective, then the fixed field of its 

kernel is a Galois extension L of k containing K with G ( L / k ) =  E. 
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2. Reduction to two special groups 

Let G be a Frobenius group. By Frobenius' theorem [5, p. 179], the set of all 

elements of G with no fixed points, together with the identity, form a normal 

subgroup M of G, the Frobenius kernel of G. If H is the subgroup of G fixing 

some given point, then H has order prime to M, and H M  = G, hence G is a split 

extension of M by H. H is called a Frobenius complement of G. 

THEOREM 2.1. (Thompson [11]; see [5, p. 184.) The Frobenius kernel of  a 

Frobenius group is nilpotent. 

THEOREM 2.2. (Shafarevich [9].) Let k be a number field, and let an embed- 

ding problem be given by (K / k, f : E --> G ( K  / k )), where f is a split epimorphism 

whose kernel is nilpotent of  order prime to the order of G ( K / k ) .  Then the 

embedding problem has a surjective solution. 

By a split epimorphism f we mean that there exists a monomorphism 

s: G ( K / k ) ~ E  such that fs is the identity map. From Theorems 2.1, 2.2 we 

obtain 

COROLLARY 2.3. I f  the Frobenius complement of a Frobenius group G is a 

Galois group over a number field k, then so is G. 

If a Frobenius group G is solvable, then it is a Galois group over every 

number field k [10]. We therefore assume from now on that G, and hence its 

Frobenius complement H, are not solvable. 

THEOREM 2.4. (Zassenhaus [5, theor. 18.6].) Let H be a nonsolvable 

Frobenius complement. Then H contains a subgroup of index 1 or 2 of the form 

Z • SL(2, 5), where Z is the semidirect product of two cyclic groups Cm and (7., of 

orders m, n respectively, and m and n are relatively prime to each other and to 2, 3, 

5. Here SL(2, 5) denotes the group of  2 x 2 matrices of  determinant one over the 

field of 5 elements. 

Clearly Z is a normal subgroup of H of order prime to its index, hence H is 

the semidirect product of Z by a complementary subgroup B. 

LEMMA 2.5. I f  B is a Galois group over a number field k, then so is H. 

PROOF. Let K / k  be a Galois extension with G ( K / k ) = B .  Z is the 

semidirect product of its normal subgroup C,, say, by C,,. Since m, n are 

relatively prime, C, is normal in H. m is prime to the order of B, so H / C ,  is the 

semidirect product of Z / C ,  by H / Z  = B, hence by a theorem of Scholz [6], 
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K / k  can be embedded into an extension K,/k with G(K, /k )= H/Cn. By the 

same argument, Kl/k can be embedded into an extension L/K with 

G(L/k)=H.  
By Corollary 2.3 and Lemma 2.5, the problem is reduced to groups of type B. 

A Sylow 2-subgroup of a Frobenius complement H is either cyclic or generalized 

quaternion [8, p. 356], hence the same is true for B. If H = Z x SL(2, 5), then 

B = SL(2, 5). Otherwise, B contains a subgroup B' of index 2 isomorphic to 

SL(2, 5), in which case a Sylow 2-subgroup of B is the generalized quaternion 

group Q16 of order 16 (generated by x, y, with defining relations x 8= y4= 1, 
x 4= y2, y-lxy = x-l). 

LEMMA 2.6. There is exactly one group B whose Sylow 2-subgroups are 
generalized quaternion, and which contains a subgroup B' of index 2 isomorphic 
to SL(2, 5). 

PROOF. Since the center C(Q16) of Q16 has order 2, as does C(B'), it follows 

that C(B) has order 2, and all these centers are identical. Now B/C(B) contains 

B'/C(B) -- PSL(2, 5) -~ As, the simple group of order 60, as a subgroup of index 

2. Hence [2, p. 176] B/C(B) is either $5 or C2 x As, where C, denotes a cyclic 

group of order n. But the latter is impossible, by comparison of the Sylow 

2-subgroups. Therefore B/C(B)= $5, so B is a central extension 

1--~ C2-o B-~ $ 5--~1 

so $5 by C2. 

Let H2(G,A) denote the second cohomology group of a group G over a 

G-module A with trivial action. The Schur multiplier H2($5, C*) of S~ [2, 25.12] 

has order two, where C* is the multiplicative group of the complex number field 

C. The short exact sequence 

* 2 

0-'> Z/2Z--> C -'> C*--> 1 

yields the cohomology sequence 

H'(Ss, C*)--~ H2($5, Z/2Z)--~ H2($5, C*). 

The two outer groups have order two, hence H2($5, Z/2Z) has order at most four. 

In fact the order is exactly four, since there are four nonisomorphic group 

extensions of $5 by Z/2Z. Two are the direct product and the pullback of the 

maps C4--~ C2~--$5, and the other two are exhibited by Schur in [7], exactly one 

of which has generalized quaternion Sylow-2-subgroup. It is the subgroup of 

GL(2, 52) generated by SL(2, 5) and the matrix 
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(0 U -1:  

where u is a primitive eighth root of unity in the field of 52 elements, g.e.d. 

SL(2, 5) is in fact a Frobenius complement [5, p. 205], and it is easy to show, 

using the example of [5, p. 205] that B is also a Frobenius complement. 

From the preceding discussion we have: 

THEOREM 2.7. Let k be a number field such that SL(2, 5) and the group B of 

Lemma 2.6 are Galois groups over k. Then every Frobenius group is a Galois 

group over k. 

3. Frobenius Galois groups over quadratic fields 

LEMMA 3.1. Let k be a number field, K / k  an unramified extension with 

G ( K / k  )-- As, in which all real primes of k split completely. Then K / k  can be 

embedded into a Galois extension L / k  with G(L  / k  )=SL(2 ,5) .  Similarly, let 

K1/k  be an unramified extension with G(K1/k )=  $5, in which all real primes split 

completely. Then K~/k  can be embedded into a Galois extension L l / k  with 

G ( L J k  )= B, where B is the extension of $5 in Lemma 2.6. 

By an unramified extension K / k  we mean that all finite primes of k are 

unramified in K. 

PROOF. An unramified extension K / k ,  in which all real primes of k split 

completely, is "tolerant with respect to 2," in the sense of Neukirch [4, p. 86]. 

The lemma follows immediately from [4, corol. 5.4] with the observation that all 

solutions to the embedding problems of Lemma 3.1 are necessarily surjective. 

Let S~ and A,  denote the symmetric and alternating groups of degree n. 

THEOREM 3.2. For any n >_- 3, there exist infinitely many imaginary quadratic 

fields Q(V'D), D E Z, each of which has an unramified Galois extension with 

Galois group An and an unramified Galois extension with Galois group Sn. 

PROOF. This theorem is essentially a corollary to a theorem proved indepen- 

dently by Uchida [12] and Yamamoto [13]. The following is proved in [12]. Let l 

be a prime number satisfying l - 1 (mod n - 1). Choose an integer b -= 0 (rood l) 

and prime to n -  1. Then choose an integer a so that a is congruent to a 

primitive root rood l, (a, nb)= 1 and a large enough so that X ~ - aX  + b has no 

rational root (there are only finitely many integral a for which X n - aX  + b has 

a rational root). Then the splitting field K of X n - a X  + b over Q has Galois 

group Sn over Q and is unramified over Q(V'D), where 
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D = D(a,  b) = ( -  1)~"t"-l~(n"b " - t -  (n - 1)"-~a ~) 

is the discriminant of X"  - aX  + b. To prove that infinitely many quadratic fields 

Q(~/D) arise in this way, it is then proved that given any prime p not dividing 

ln(n - 1), a and b can be chosen as above so that, in addition, D is divisible by p 

but not by p2. We need the following sharper version of this last fact. Given any 

square[tee integer r, relatively prime to ln(n - 1), a and b canbe chosen as above 

so that, in addition, for every prime p dividing r, D is divisible by p but not by p2. 

Our argument is a refinement of that in [12]. Choose b =- n - 1 (mod r) and as 

before, b----0 (rood/),(b, n -  1)= 1. Since (r, n ) =  1, we can choose al so that 

at --- n (mod r), at congruent to a primitive root mod l, (at, nb) = 1 and at large 

enough so that X " - a t X +  b has no rational roots. Then D1 = D(al ,  b) is 

divisible by r. If p21Dt for some prime p I r, write r = r~r2, where rt is the product 

of the primes which divide r and whose squares divide Dr. Now replace at by 

a = a~ + nblrtr~. Then a has all the properties of at, and for every prime p I r, 

p lD ,  p2 X D, where D = D(a ,b) .  

Now let X " - a X + b  be a trinomial satisfying the conditions of the 

Uchida-Yamamoto theorem. Let K be its splitting field, D its discriminant. By 

choice of a and b, D is prime to ln(n - 1). Let r0 be the product of the prime 

divisors of D, let q be a prime not dividing Dln(n - 1), and set r = qro. It follows 

from the preceding discussion that there is another trinomial X " - a ' X  + b' 

whose discriminant D '  is divisible by r but not by the square of any prime 

dividing r, and in addition, its splitting field K' ,  like K, has Galois group S, over 

Q, and is unramified over Q(X/D-7). We observe that a '  can be chosen so that D '  

is negative. 
Let us verify that Q(~/~-7) satisfies the requirements of the theorem. First, 

K ' / Q ( ~ / ~ )  is unramified with Galois group An. Secondly, since Q(V'D-;) tq K = 

Q, K(V'D-;)/Q(~/D -;) has Galois group S,. Moreover, K/Q(X/D)  is unramified, 

hence so is K(X/D-7)/Q(X/D, ~ / ~ ) .  But Q(~/D, X/~)/Q(X/D-;)  is unramified, 

hence K ( N / ~ )  is unramified over Q(~/D;).  The process of going from D to D '  

can be iterated, hence there are infinitely many imaginary quadratic fields 

satisfying the requirements of the theorem. This completes the proof. 

THEOREM 3.3. There are infinitely many imaginary quadratic fields over each 

of which every Frobenius group is a Galois group. 

PROOF. The theorem follows immediately from Theorem 2.7, Lemma 3.1, 

and Theorem 3.2. 

EXAMPLE. X s -  X + 1 has Galois group $5 over Q and is unramified over 
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Q(X/D00) = 2869 = 19 x 151 [3, p. 121]. Taking ! = 5, r --- 3 x 19 x 151 = 8607, we 

can take b = 25,825 = 52x 1033, al = 51,647. D1 = D(51,647; 25,825) is divisible 

by 32, 19, 151 and not by 192 or 1515. Hence  if we replace al by 

a = a~ + nblr~r~ 

= 51,647 + 52 x 25,825 x 3 x 192 x 151 z 

= 15,942,730,013,522 

then D = D(a,  b) satisfies the conditions of Theorem 3.3, i.e. every Frobenius 

group is a Galois group over  Q(X/D).  
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